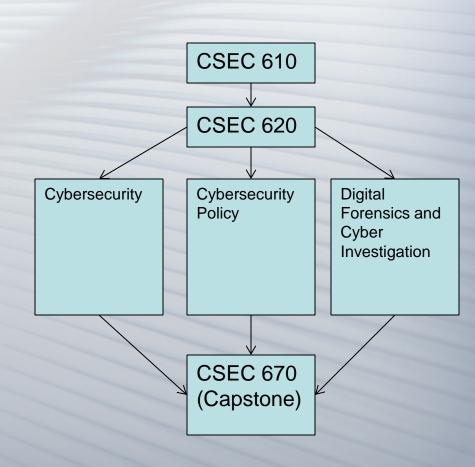
Creating an Online
Cybersecurity Capstone
Simulation

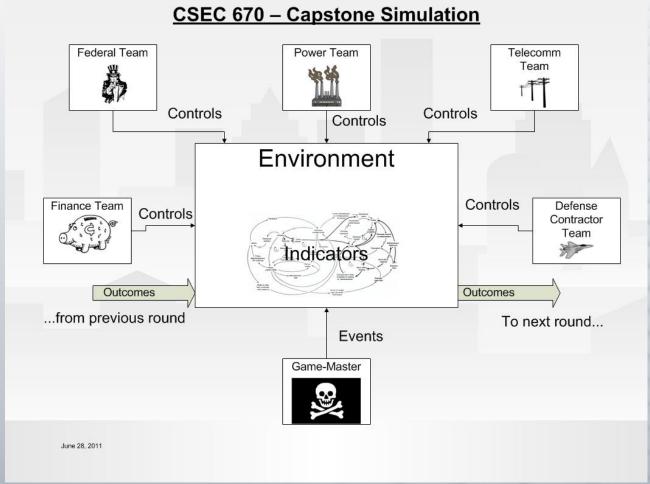

Alan Carswell Jim Cook

FISSEA Conference - March 21, 2013




#### Overview

- Cybersecurity Programs
  - MS in Cybersecurity
  - MS in Cybersecurity Policy
  - MS in Digital Forensics and Cyber Investigation
- Six-credit courses
- 100% online
- Interdisciplinary
- Simulation a part of CSEC 670




### Overview – Simulation Objectives

- Multi-player collaborative online "game"
- Simulation of a national environment
- Technical and Policy Issues
- Synthesis of prior learning
- Bridge to career



#### Overview - Simulation Organization





### UMUC Cybersecurity Capstone Simulation Mission – Protect the US Critical Information Infrastructure against cyberattack















# UMUC Capstone Simulation Combines Technical and Policy Skills

- RedTeam vs BlueTeam
  - Technical insight
- <u>Tabletop exercises</u>
  - Policy insight
- Objectives are to protect -
  - system security
  - profitability
  - popular sentiment
  - national security
  - minimize system downtime
- Maintain Business & Infrastructure Budgets





#### Roles

- Game Master
- Instructor
- Student Teams
  - represent Critical Infrastructure businesses
- Individual Students take on Roles for managing cybersecurity
  - CIO
  - Net Admin
  - Cyber Sec Officer
  - Cyber Policy Coord
  - Etc.





### Operation

- Weekly Cycle
- Game Master
  - introduces Attacks
- Students Teams →
  - Receive Alerts About Attacks
  - Select controls to counter
  - Cooperate to stay within budget
  - Adjust cost and strength of controls
  - Finalize selections



### Outputs and Evaluation

- Student Teams
  - choose controls
  - write rationale for control selections
- Model runs in background
- Output Indexes rise or fall for Security and Business Health
- Charts show effects of student choices on Output Indexes
- Instructor
  - uses special tools for analysis
  - evaluates indexes and rationale
  - comments on effectiveness of choices made by each team.

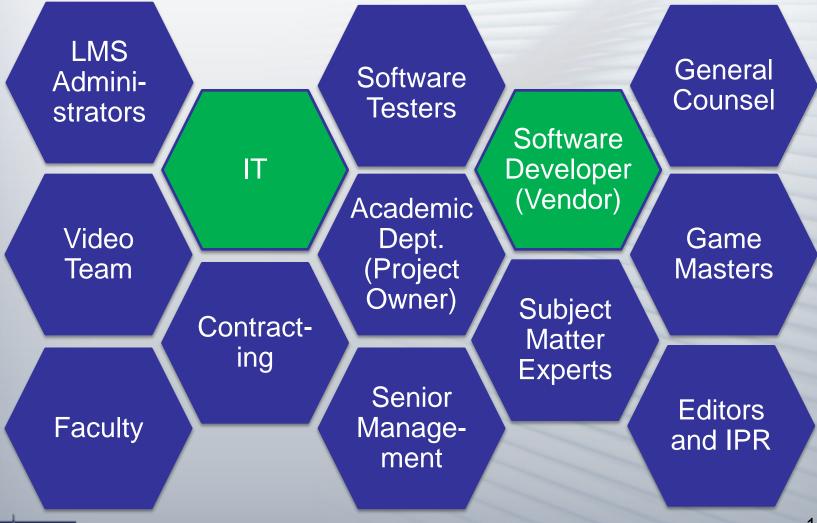


# Grading Rubric

|                                      | Excellent | Satisfactory | Needs<br>Improvement | Comments |
|--------------------------------------|-----------|--------------|----------------------|----------|
| Changes in key indices from previous |           |              |                      |          |
| round (not applicable for Round 1)   |           |              |                      |          |
| Consideration of environmental       |           |              |                      |          |
| effects such as events and previous  |           |              |                      |          |
| rounds' outcomes.                    |           |              |                      |          |
| Demonstration of understanding of    |           |              |                      |          |
| controls' effects on security.       |           |              |                      |          |
| Demonstration of knowledge of the    |           |              |                      |          |
| sector's contribution to national    |           |              |                      |          |
| security                             |           |              |                      |          |
| Acknowledgement of trade-offs        |           |              |                      |          |
| between conflicting objectives.      |           |              |                      |          |
| Demonstration of team                |           |              |                      |          |
| coordination.                        |           |              |                      |          |
| Proper writing, including grammar,   |           |              |                      |          |
| punctuation, sentence structure,     |           |              |                      |          |
| and typography. Compliance with      |           |              |                      |          |
| APA format.                          |           |              |                      |          |

# Managing the Project

**Project Scope Quality Standards** Value to the University **Project Costs and Project Schedule** Resources


#### Coordination



#### Coordination



#### Coordination



# **Project Phases**

Design

Development Deployment

# Design Phase

- SMEs and software designers conceptualize product
- Functional specifications document

## Development Phase

- Prototypes and components
- Alpha, Beta, and Gold subphases-delivery and testing of software
- User manuals
- Technical architecture design
- Server hosting
- Load testing

# Deployment Phase

- Training of faculty
- Additional documentation for students and faculty
- Facilitating deployment in semester

#### Results and Plans

- Student reaction generally positive
  - Using what they learned in their previous courses
  - Simulation visually interesting, easy to use
- But...
  - a steep learning curve
  - Unclear relationship between decisions and outcomes (maybe a virtue?)
- Future plans cross-team effects

### Questions?



#### Controls

- Decisions on technical and policy measures like:
  - Frequency of software updates
  - RAID levels implemented
  - Level of encryption
  - Investment in training
- Optimization



#### **Events**

- Injected by Game Master
- Examples
  - DDoS attack
  - Phishing expedition
  - Economic downturn
  - Natural disaster



#### Outcomes

- Indicators measuring the performance of each team. Examples:
  - Profitability (Surplus for the Federal Government team)
  - Employee Morale
  - Security Index
  - Budget

